Versatile functionalization of carbon electrodes with a polypyridine ligand: metallation and electrocatalytic H(+) and CO2 reduction.
نویسندگان
چکیده
A strategy is proposed for immobilization of homogeneous catalysts whereby a glassy carbon electrode is functionalized by electro-grafting of a ligand, terpyridine. The modified electrode can easily be metallated with cobalt and shows activity towards catalytic proton and CO2 reduction. The metal can be removed and the electrode re-metallated at will.
منابع مشابه
Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملMechanistic insights into electrocatalytic CO2 reduction within [Ru(II)(tpy)(NN)X]n+ architectures.
A series of Ru(II)-polypyridyl complexes of the design [Ru(II)(tpy)(NN)X](n+) (tpy = 2,2':6',2''-terpyridine; NN = bidentate polypyridine; X = Cl(-) or CH3CN; n = 1 or 2) have been synthesized and analyzed for their ability to function as electrocatalysts in the reduction of CO2 to CO. Varying the electron-donating/withdrawing character of the NN polypyridyl ligand has allowed for modification ...
متن کاملA nickel complex with a biscarbene pincer-type ligand shows high electrocatalytic reduction of CO2 over H2O.
We report a planar nickel complex coordinated with a pincer-type carbene-pyridine-carbene ligand which exhibits high selectivity for electrocatalytic CO2 reduction in the presence of H2O.
متن کاملStudies of Cobalt-Mediated Electrocatalytic CO2 Reduction Using a Redox-Active Ligand
The cobalt complex [Co(III)N4H(Br)2](+) (N4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7),2,11,13,15-pentaene) was used for electrocatalytic CO2 reduction in wet MeCN with a glassy carbon working electrode. When water was employed as the proton source (10 M in MeCN), CO was produced (fCO= 45% ± 6.4) near the Co(I/0) redox couple for [Co(III)N4H(Br)2](+) (E1/2 = -1.88 V FeCp...
متن کاملEffect of Different CNT’s Oxidation Methods on Thiocoline Detection by Surfactant Modified Graphite Electrodes
Carbon nanotubes are regarded as promising building blocks for the construction of novel biosensors due to their unique properties like fast electron transfer, high electrocatalytic effect and good biocompatibility. In the present study, the effect of different chemical oxidation’s methods of multi-walled carbon nanotubes (MWCNTs) on the electrochemical behavior of modified graphite electrodes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 51 14 شماره
صفحات -
تاریخ انتشار 2015